

Development of a Turn Key Cryogenic Cooling Module for Space Flight Based on a Commercial Cryocooler

Perry G. Ramsey
Cryogenic Systems Engineering

Objective: Adapt COTS Cooler for Flight

- COTS coolers have significant advantages
 - Procurement cost
 - Lead time
 - Experience base
- But some problems must be solved
 - Heat rejection
 - Launch loads
 - Electronics
 - Peripherals

Core is Thales 9310

- 5 W class pulse tube
- High production rate
- 47 Hz operating frequency
- Suitable for ground use, lacks features needed for flight

Source: http://www.thales-cryogenics.com/wp-content/uploads/2014/04/lpt9310weboutline.png

Mounting Blocks Provide Heat Rejection

- Aluminum
- Structural support
- Provide interface for CCHPs
 - Compressor and expander require cooling
 - Two per component for one fault tolerance

Rigid Support for Two Coolers

- Aluminum
- Structural support
- First mode above 3rd harmonic
- Avoid amplification of inputs

Full Assembly Includes Passive Vibration Damping

- Visco-elastic isolators from Moog-CSA
- Modes ~20-30 Hz
- Damps launch loads and operating EFT
- Coolers export vibe in pulse tube and other direction
- AVC only works in compressor direction

Straps Connect Cooler to Payload

- Thermotive LLC
- Composite foil conductors
- Significantly better conductance than aluminum
- Has passed large displacement dynamic testing

Thermal Switches Disconnect Redundant Cooler

- Built by Orbital ATK
- Modification of existing design
 - Differential CTE

See: Bugby, D. C., et al., "Cryogenic Thermal Management Advanced During the Cryotool Program", in Advances in Cryogenic Engineering Vol. 51, J. G. Weisend II, ed., October 2006

Modified Iris LCCE Electronics

- Iris Technology is producing a line of cryocooler electronics
- Modifying LCCE
 - 200 W output
 - Active vibe cancellation to 5th harmonic
- Brassboard and EM have been produced

Passed Launch Vibe

- Tested to a generic random launch vibe profile
- Good roll off of 2nd and 3rd harmonic EFT

Protoflight Test Level	
0.026 g ² /Hz	
+6 dB/octave	
0.16 g ² /Hz	
-4.5 dB/octave	
0.02	
12.4 g ² /Hz	
Test duration is 60 seconds per axis	

Fully Assembled Unit Ready for Thermal Test

- Have run EMI
 - Pass with some small outages
- Running Exported Forces and Torques (EFT) now

Acknowledgements

- The research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.
- The success of this work is due to the contribution of a large group of people
- Chuck Phillips, Paul MacNeal, Tri Huynh, Andy Michelbrink, Barry Orr, Hugo Rodriguez, Ian McKinley, and Dave Bugby, all of JPL
- Alex Sprunt of ATA Engineering
- Paul Wilke, Brad Allen, and Aaron Dawson of MOOG CSA Engineering
- Ryan Hoffmaster, Jessica Kester, and Dmitry Khrustalev of Orbital-ATK

jpl.nasa.gov